Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 7762, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565529

RESUMEN

Groundwater is an excellent alternative to freshwater for drinking, irrigation, and developing arid regions. Agricultural, commercial, industrial, residential, and municipal activities may affect groundwater quantity and quality. Therefore, we aimed to use advanced methods/techniques to monitor the piezometric levels and collect groundwater samples to test their physicochemical and biological characteristics. Our results using software programs showed two main types of groundwater: the most prevalent was the Na-Cl type, which accounts for 94% of the groundwater samples, whereas the Mg-Cl type was found in 6% of samples only. In general, the hydraulic gradient values, ranging from medium to low, could be attributed to the slow movement of groundwater. Salinity distribution in groundwater maps varied between 238 and 1350 mg L-1. Although lower salinity values were observed in northwestern wells, higher values were recorded in southern ones. The collected seventeen water samples exhibited brackish characteristics and were subjected to microbial growth monitoring. Sample WD12 had the lowest total bacterial count (TBC) of 4.8 ± 0.9 colony forming unit (CFU mg L-1), while WD14 had the highest TBC (7.5 ± 0.5 CFU mg L-1). None of the tested water samples, however, contained pathogenic microorganisms. In conclusion, the current simulation models for groundwater drawdown of the Quaternary aquifer system predict a considerable drawdown of water levels over the next 10, 20, and 30 years with the continuous development of the region.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Sistemas de Información Geográfica , Agua Subterránea/química , Pozos de Agua , Agua , Calidad del Agua , Contaminantes Químicos del Agua/análisis
2.
Bioorg Chem ; 143: 107028, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38086240

RESUMEN

The target of the study is to modify the efficiency of Molnupiravir-drug (MOL) for COVID-19 therapy via the rearrangement of the building engineering of MOL-drug by loading it with self-assembly biomolecules nanoparticles (NPs) of pycnogenol (Pyc) and cellulose (CNC) which are decorated by zinc oxide nanoparticles. The synthesis and characterization of the modified drug are performing successfully, the loading and release process of the MOL drug on a nano surface is measured by UV-Vis spectroscopy under room temperature and different pH. The release efficiency of the MOL drug is calculated to be 65% (pH 6.8) and 69% (pH 7.4). The modified MOL drug displays 71% (pH 6.8) and 78% (pH 7.4) for CNC@Pyc.MOL nanocomposite, while CNC@Pyc.MOL.ZnO nanocomposite gave values at 76% (pH 6.8) and 78% (pH 7.4), the efficiency recorded after 19 h. The biological activity of the MOL-drug and modified MOL-drug is measured, and the cytotoxicity is performed by SRB technique, where the self-assembly (CNC@Pyc) appears to be a safe healthy, and high viability against the examined cell line. The antioxidant activity and anti-inflammatory are evaluated, where the nanocomposite that has ZnO NPs (CNC@Pyc.MOL.ZnO) gave high efficiency compared to the composite without ZnO NPs. The CPE-inhibition assay is used to identify potential antivirals against CVID-19 (229E virus), the viral inhibition (%) was reported at 37.6 % (for 800 µg/ml) and 18.02 % (for 400 µg/ml) of CNC@Pyc.MOL.ZnO. So, the modified MOL-drug was suggested as a replacement drug for the therapy of COVID-19 compared to MOL-drug, but the results need clinical trials.


Asunto(s)
COVID-19 , Citidina/análogos & derivados , Flavonoides , Hidroxilaminas , Nanopartículas , Extractos Vegetales , Óxido de Zinc , Humanos , Óxido de Zinc/farmacología , Óxido de Zinc/química , Celulosa/farmacología , Nanopartículas/química , Antivirales/farmacología , Antibacterianos/farmacología
3.
World J Microbiol Biotechnol ; 39(12): 345, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37843704

RESUMEN

Macroalgae has the potential to be a precious resource in food, pharmaceutical, and nutraceutical industries. Therefore, the present study was carried out to identify and quantify the phyco-chemicals and to assess the nutritional profile, antimicrobial, antioxidant, and anti-diabetic properties of Nitella hyalina extracts. Nutritional composition revealed0.05 ± 2.40% ash content, followed by crude protein (24.66 ± 0.95%), crude fat (17.66 ± 1.42%), crude fiber (2.17 ± 0.91%), moisture content (15.46 ± 0.48%) and calculated energy value (173.50 ± 2.90 Kcal/100 g). 23 compounds were identified through GC-MS analysis in ethyl acetate extract, with primary compounds being Palmitic acid, methyl ester, (Z)-9-Hexadecenoic acid, methyl ester, and Methyl tetra decanoate. Whereas 15 compounds were identified in n-butanol extract, with the major compounds being Tetra decanoic acid, 9-hexadecanoic acid, Methyl pentopyranoside, and undecane. FT-IR spectroscopy confirmed the presence of alcoholic phenol, saturated aliphatic compounds, lipids, carboxylic acid, carbonyl, aromatic components, amine, alkyl halides, alkene, and halogen compounds. Moreover, n-butanol contains 1.663 ± 0.768 mg GAE/g, of total phenolic contents (TPC,) and 2.050 ± 0.143 QE/g of total flavonoid contents (TFC), followed by ethyl acetate extract, i.e. 1.043 ± 0.961 mg GAE/g and 1.730 ± 0.311 mg QE/g respectively. Anti-radical scavenging effect in a range of 34.55-46.35% and 35.39-41.79% was measured for n-butanol and ethyl acetate extracts, respectively. Antimicrobial results declared that n-butanol extract had the highest growth inhibitory effect, followed by ethyl acetate extract. Pseudomonas aeruginosa was reported to be the most susceptible strain, followed by Staphylococcus aureus and Escherichia coli, while Candida albicans showed the least inhibition at all concentrations. In-vivo hypoglycemic study revealed that both extracts exhibited dose-dependent activity. Significant hypoglycemic activity was observed at a dose of 300 mg/kg- 1 after 6 h i.e. 241.50 ± 2.88, followed by doses of 200 and 100 mg/kg- 1 (245.17 ± 3.43 and 250.67 ± 7.45, respectively) for n-butanol extract. In conclusion, the macroalgae demonstrated potency concerning antioxidant, antimicrobial, and hypoglycemic properties.


Asunto(s)
Antiinfecciosos , Nitella , Antioxidantes/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Hipoglucemiantes/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , 1-Butanol , Antiinfecciosos/farmacología , Antiinfecciosos/química , Ésteres
4.
Plants (Basel) ; 13(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38202417

RESUMEN

This review delves into the mesmerizing technology of nano-agrochemicals, specifically pesticides and herbicides, and their potential to aid in the achievement of UN SDG 17, which aims to reduce hunger and poverty globally. The global market for conventional pesticides and herbicides is expected to reach USD 82.9 billion by 2027, growing 2.7% annually, with North America, Europe, and the Asia-Pacific region being the biggest markets. However, the extensive use of chemical pesticides has proven adverse effects on human health as well as the ecosystem. Therefore, the efficacy, mechanisms, and environmental impacts of conventional pesticides require sustainable alternatives for effective pest management. Undoubtedly, nano-agrochemicals have the potential to completely transform agriculture by increasing crop yields with reduced environmental contamination. The present review discusses the effectiveness and environmental impact of nanopesticides as promising strategies for sustainable agriculture. It provides a concise overview of green nano-agrochemical synthesis and agricultural applications, and the efficacy of nano-agrochemicals against pests including insects and weeds. Nano-agrochemical pesticides are investigated due to their unique size and exceptional performance advantages over conventional ones. Here, we have focused on the environmental risks and current state of nano-agrochemicals, emphasizing the need for further investigations. The review also draws the attention of agriculturists and stakeholders to the current trends of nanomaterial use in agriculture especially for reducing plant diseases and pests. A discussion of the pros and cons of nano-agrochemicals is paramount for their application in sustainable agriculture.

5.
Pathogens ; 11(12)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36558781

RESUMEN

Mango hopper (Amritodus atkinsoni Lethierry) causes devastations in the early vegetative stage of the mango crop. The classical management of mango hopper is with systemic insecticides but their overuse has caused environmental pollution. Here, we have evaluated the entomopathogenic role of Clonostachys rosea through bioassay and optimized media for its large-scale culturing. The current study reveals the potentiality of C. rosea as entomopathogenic on A. atkinsoni. Initially, morphological and molecular characterization was used to validate local isolates' identity as C. rosea. Further, we have evaluated the entomopathogenic role of C. rosea through a bioassay, where the highest mean mortality in A. atkinsoni was observed at a treatment concentration of 3 × 108 conidia/mL, with 96.67% mortality after 168 h of infection. This work also provides insight into the laboratory-based media standardization for C. rosea, resulting in oatmeal agar media and broth as the most suitable artificial media, and 20 °C temperature for its mass culture. Thus, C. rosea is a novo-entomopathogenic fungus on A. atkinsoni and has a high potency to be included in the management of mango hopper pests.

6.
Life (Basel) ; 12(7)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35888073

RESUMEN

Wheat is the most extensively cultivated crop and occupies a central place in human nutrition providing 20% of the daily food calories. This study was conducted to find both T and ψ effects on wheat germination and the cardinal Ts value; a lab experiment was accomplished using HTT models. Cultivars were germinated under different accelerated aging periods (AAP, 0, 24, 48, and 72 h) at each of the following constant Ts of 15, 20, 25, 30, and 35 °C at each of the ψs of 0, -0.05, -0.1, -0.15, and -0.2 MPa. GR, GP, and other germination parameters (GI, GRI, CVG, SVI-I, SVI-II, GE, and MGT) were significantly determined by solute potential, temperature, and reciprocal action in both cultivars (p ≤ 0.01). Depending on the confidence interval of the model co-efficiently between cultivars, there was no significant difference. Hence, the average of cardinal Ts was 15, 20, and 35 °C for the Tb, To, and Tc, respectively, in the control condition (0 MPa). Hydro-time values declined when Ts was raised to To in cultivars, then remained constant at Ts ≥ To (2.4 MPah-1 in Pirsabak 15 and 0.96 MPah-1 in Shahkar). The slope of the relationship between ψb(50) and TTsupra with temperature when Ts is raised above To and reaches 0 at Tc. In conclusion, the assessed parameter values in this study can easily be used in simulation models of wheat germination to quantitatively characterize the physiological status of wheat seed populations at different Ts and ψs.

7.
J Fungi (Basel) ; 8(2)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35205888

RESUMEN

The soil-borne pathogens Rhizoctonia solani and Sclerotium rolfsii have emerged as major pathogens of radish (Raphanus sativus) worldwide. The induction of soil suppressive of radish root rot disease was evaluated in soil repeatedly inoculated with R. solani, nonpathogenic binucleate Rhizoctonia sp. AG-A W1 (BNR) and S. rolfsii. The repeated inoculations of soil with R. solani and BNR significantly suppressed the disease severity of R. solani and S. rolfsii compared to the control. In contrast, the repeated inoculation of soil with S. rolfsii significantly suppressed only the pathogen, S. rolfsii. The community structure was examined using PCR-DGGE (polymerase chain reaction denaturing gradient gel electrophoresis) method. The bands of Trichoderma sp. were observed in the first, second and third inoculations of the soil with BNR. Similarly, bands of Trichoderma sp. were observed in the second and third inoculations of the soil with S. rolfsii and R. solani. Compared to the control, disease severity was significantly reduced in the soil repeatedly inoculated with S. rolfsii and R. solani . In conclusion, Trichoderma species were accumulated in specific patterns depending on the applied fungal inoculum in the suppressive soil.

8.
Front Plant Sci ; 13: 1085368, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36643298

RESUMEN

Abiotic stresses and climate changes cause severe loss of yield and quality of crops and reduce the production area worldwide. Flooding stress curtails soybean growth, yield, and quality and ultimately threatens the global food supply chain. Flooding tolerance is a multigenic trait. Tremendous research in molecular breeding explored the potential genomic regions governing flood tolerance in soybean. The most robust way to develop flooding tolerance in soybean is by using molecular methods, including quantitative trait loci (QTL) mapping, identification of transcriptomes, transcription factor analysis, CRISPR/Cas9, and to some extent, genome-wide association studies (GWAS), and multi-omics techniques. These powerful molecular tools have deepened our knowledge about the molecular mechanism of flooding stress tolerance. Besides all this, using conventional breeding methods (hybridization, introduction, and backcrossing) and other agronomic practices is also helpful in combating the rising flooding threats to the soybean crop. The current review aims to summarize recent advancements in breeding flood-tolerant soybean, mainly by using molecular and conventional tools and their prospects. This updated picture will be a treasure trove for future researchers to comprehend the foundation of flooding tolerance in soybean and cover the given research gaps to develop tolerant soybean cultivars able to sustain growth under extreme climatic changes.

9.
Plants (Basel) ; 10(12)2021 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-34961208

RESUMEN

Recently, there have been urgent economic and scientific demands to decrease the use of chemical fungicides during the treatment of phytopathogens, due to their human health and environmental impacts. This study explored the biocontrol efficacy of novel and eco-friendly preen (uropygial) oil and endophytic Bacillus safensis in managing postharvest Botrytis grey mold in strawberry fruit. The preen oil (25 µL/mL) showed high antifungal activity against B. cinerea Str5 in terms of the reduction in the fungal radial growth (41.3%) and the fungal colony-forming units (28.6%) compared to the control. A new strain of Bacillus safensis B3 had a good potential to produce chitinase enzymes (3.69 ± 0.31 U/mL), hydrolytic lipase (10.65 ± 0.51 U/mL), and protease enzymes (13.28 ± 0.65 U/mL), which are responsible for the hydrolysis of the B. cinerea Str5 cell wall and, consequently, restrict fungal growth. The in vivo experiment on strawberry fruit showed that preen (uropygial) oil reduced the disease severity by 87.25%, while the endophytic bacteria B. safensis B3 reduced it by 86.52%. This study reports the efficiency of individually applied bioagents in the control of phytopathogenic fungi for the first time and, consequently, encourages their application as a new and innovative strategy for prospective agricultural technology and food safety.

10.
Plants (Basel) ; 10(11)2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34834726

RESUMEN

This study aimed to synthesize silver nanoparticles (AgNPs) by pomegranate and orange peel extracts using a low concentration of AgNO3 solution to controlearly blight of tomato caused by Alternaria solani. The pathogen was isolated from infected tomato plants growing in different areas of Saudi Arabia. The isolates of this pathogen were morphologically and molecularly identified. Extracts from peels of pomegranate and orange fruits effectively developed a simple, quick, eco-friendly and economical method through a synthesis of AgNPs as antifungal agents against A. solani. Phenolic content in the pomegranate peel extract was greater than orange peel extract. Phenolic compounds showed a variation of both peel extracts as identified and quantified by High-Performance Liquid Chromatography. The phenolic composition displayed variability as the pomegranate peel extract exhibited an exorbitant amount of Quercitrin (23.62 mg/g DW), while orange peel extract recorded a high amount of Chlorogenic acid (5.92 mg/g DW). Biosynthesized AgNPs were characterized using UV- visible spectroscopy which recorded an average wavelength of 437 nm and 450 nm for pomegranate and orange peels, respectively. Fourier-transform infrared spectroscopy exhibited 32x73.24, 2223.71, 2047.29 and 1972.46 cm-1, and 3260.70, 1634.62, 1376.62 and 1243.76 cm-1 for pomegranate and orange peels, respectively. Transmission electron microscopy showed spherical shape of nanoparticles. Zetasizer analysis presented negative charge values; -16.9 and -19.5 mV with average particle sizes 8 and 14 nm fin case of pomegranate and orange peels, respectively. In vitro, antifungal assay was done to estimate the possibility of biosynthesized AgNPs and crude extracts of fruit peels to reduce the mycelial growth of A. solani. AgNPs displayed more fungal mycelial inhibition than crude extracts of two peels and AgNO3. We recommend the use of AgNPs synthesized from fruit peels for controlling fungal plant pathogens and may be applied broadly and safely in place by using the chemical fungicides, which display high toxicity for humans.

11.
Molecules ; 26(7)2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33807313

RESUMEN

L-glutaminase is an important anticancer agent that is used extensively worldwide by depriving cancer cells of L-glutamine. The marine bacterium, Halomonas meridian was isolated from the Red Sea and selected as the more active L-glutaminase-producing bacteria. L-glutaminase fermentation was optimized at 36 h, pH 8.0, 37 °C, and 3.0% NaCl, using glucose at 1.5% and soybean meal at 2%. The purified enzyme showed a specific activity of 36.08 U/mg, and the molecular weight was found to be 57 kDa by the SDS-PAGE analysis. The enzyme was highly active at pH 8.0 and 37 °C. The kinetics' parameters of Km and Vmax were 12.2 × 10-6 M and 121.95 µmol/mL/min, respectively, which reflects a higher affinity for its substrate. The anticancer efficiency of the enzyme showed significant toxic activity toward colorectal adenocarcinoma cells; LS 174 T (IC50 7.0 µg/mL) and HCT 116 (IC50 13.2 µg/mL). A higher incidence of cell death was observed with early apoptosis in HCT 116 than in LS 174 T, whereas late apoptosis was observed in LS 174 T more than in HCT 116. Also, the L-glutaminase induction nuclear fragmentation in HCT 116 was more than that in the LS 174T cells. This is the first report on Halomonas meridiana as an L-glutaminase producer that is used as an anti-colorectal cancer agent.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales/patología , Glutaminasa , Halomonas/enzimología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Glutaminasa/farmacología , Células HCT116 , Humanos , Océano Índico , Cinética , Peso Molecular , Especificidad por Sustrato
12.
Chemosphere ; 264(Pt 2): 128541, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33059282

RESUMEN

Recently, efforts to determine the ecological impacts of microplastic pollutants have increased because of plastic's accelerated contamination of the environment. The tiny size, variable surface topography, thermal properties, bioavailability and biological toxicity of microplastics all offer opportunities for these pollutants to negatively impact the environment. Additionally, various inorganic and organic chemicals sorbed on these particles may pose a greater threat to organisms than the microplastics themselves. However, there is still a big knowledge gap in the assessment of various toxicological effects of microplastics in the environment. Ecological risk assessment of microplastics has become more challenging with the current data gaps. Thus, a current literature review and identification of the areas where research on ecology of microplastics can be extended is necessary. We have provided an overview of various aspects of microplastics by which they interact negatively or positively with marine organisms. We hypothesize that biogeochemical interactions are critical to fully understand the ecological impacts, movement, and fate of microplastics in oceans. As microplastics are now ubiquitous in marine environments and impossible to remove, we recommend that it's not too late to converge research on plastic alternatives. In addition, strict actions should be taken promptly to prevent plastics from entering the environment.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Organismos Acuáticos , Monitoreo del Ambiente , Microplásticos , Océanos y Mares , Plásticos/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
13.
Sci Rep ; 10(1): 8815, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32483188

RESUMEN

Biobased degradable plastics have received significant attention owing to their potential application as a green alternative to synthetic plastics. A dye-based procedure was used to screen poly-3-hydroxybutyrate (PHB)-producing marine bacteria isolated from the Red Sea, Saudi Arabia. Among the 56 bacterial isolates, Pseudodonghicola xiamenensis, identified using 16S rRNA gene analyses, accumulated the highest amount of PHB. The highest PHB production by P. xiamenensis was achieved after 96 h of incubation at pH 7.5 and 35 °C in the presence of 4% NaCl, and peptone was the preferred nitrogen source. The use of date syrup at 4% (w/v) resulted in a PHB concentration of 15.54 g/L and a PHB yield of 38.85% of the date syrup, with a productivity rate of 0.162 g/L/h, which could substantially improve the production cost. Structural assessment of the bioplastic by Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy revealed the presence of methyl, hydroxyl, methine, methylene, and ester carbonyl groups in the extracted polymer. The derivative products of butanoic acid estimated by gas chromatography-mass spectrometry [butanoic acid, 2-amino-4-(methylseleno), hexanoic acid, 4-methyl-, methyl ester, and hexanedioic acid, monomethyl ester] confirmed the structure of PHB. The present results are the first report on the production of a bioplastic by P. xiamenensis, suggesting that Red Sea habitats are a potential biological reservoir for novel bioplastic-producing bacteria.


Asunto(s)
Plásticos Biodegradables/metabolismo , Biopolímeros/biosíntesis , Hidroxibutiratos/metabolismo , Microbiología Industrial/métodos , Residuos Industriales , Phoeniceae , Poliésteres/metabolismo , Rhodobacteraceae/metabolismo , Técnicas Bacteriológicas , Plásticos Biodegradables/química , Biopolímeros/química , Medios de Cultivo , Cromatografía de Gases y Espectrometría de Masas , Sedimentos Geológicos/microbiología , Hidroxibutiratos/química , Océano Índico , Resonancia Magnética Nuclear Biomolecular , Filogenia , Preparaciones de Plantas , Poliésteres/química , Rhodobacteraceae/clasificación , Rhodobacteraceae/genética , Rhodobacteraceae/aislamiento & purificación , Ribotipificación , Agua de Mar/microbiología , Cloruro de Sodio/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Microbiología del Agua
14.
Mycobiology ; 48(2): 122-132, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32363040

RESUMEN

Citric acid is a commercially valuable organic acid widely used in food, pharmaceutical, and beverage industries. In this study, 260 yeast strains were isolated from soil, bread, juices, and fruits wastes and preliminarily screened using bromocresol green agar plates for their ability to produce organic acids. Overall, 251 yeast isolates showed positive results, with yellow halos surrounding the colonies. Citric acid production by 20 promising isolates was evaluated using both free and immobilized cell techniques. Results showed that citric acid production by immobilized cells (30-40 g/L) was greater than that of freely suspended cells (8-19 g/L). Of the 20 isolates, two (KKU-L42 and KKU-L53) were selected for further analysis based on their citric acid production levels. Immobilized KKU-L42 cells had a higher citric acid production rate (62.5%), while immobilized KKU-L53 cells showed an ∼52.2% increase in citric acid production compared with free cells. The two isolates were accurately identified by amplification and sequence analysis of the 26S rRNA gene D1/D2 domain, with GenBank-based sequence comparison confirming that isolates KKU-L42 and KKU-L53 were Candida tropicalis and Pichia kluyveri, respectively. Several factors, including fermentation period, pH, temperature, and carbon and nitrogen source, were optimized for enhanced production of citric acid by both isolates. Maximum production was achieved at fermentation period of 5 days at pH 5.0 with glucose as a carbon source by both isolates. The optimum incubation temperature for citric acid production by C. tropicalis was 32 °C, with NH4Cl the best nitrogen source, while maximum citric acid by P. kluyveri was observed at 27 °C with (NH4)2 SO4 as the nitrogen source. Citric acid production was maintained for about four repeated batches over a period of 20 days. Our results suggest that apple and banana wastes are potential sources of novel yeast strains; C. tropicalis and P. kluyveri which could be used for commercial citric acid production.

15.
Int J Biol Macromol ; 153: 561-572, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32151720

RESUMEN

This study reports on the exploitation of keratinous hydrolysate by keratinase enzymes to produce vitamin B-complex. Toward this end, keratinase enzyme was produced by Bacillus thuringiensis strain MT1, newly isolated from cattle-yard utilising donkey hairs. Scanning electron microscope (SEM) and Fourier transform infrared spectrophotometer (FTIR) analyses demonstrated hairs disintegration and the disruption of the disulphide bonds of the keratin structure, respectively. The biochemical characterisation of the produced enzyme exhibited optimal activity of 422 U/ml at 50 °C and pH 9 with a molecular mass of 80 kDa. The enzyme activity was entirely deactivated by Ethylenediaminetetraacetic acid (EDTA), implying the existence of a metallokeratinase group. Donkey hairs were thus treated with metallokeratinase, emancipating eight essential and eight more non-essential amino acids, which were identified employing amino acid analyser. These amino acids were subsequently utilised by Saccharomyces cerevisiae strain ATCC 64712, at different concentrations, to produce vitamin B-complex. High-performance liquid chromatography (HPLC) analysis revealed the synthesis of vitamins B1, B2, and B12 at various levels associated with concentrations of supplemented amino acids. This report thus highlights the feasible application of keratinase enzyme as an eco-friendly approach to managing hair waste, and concurrently promotes the implementation of hair-based hydrolysate in vitamin B-complex biosynthesis.


Asunto(s)
Bacillus thuringiensis/enzimología , Proteínas Bacterianas/química , Cabello/química , Queratinas/química , Péptido Hidrolasas/química , Animales , Bovinos , Hidrólisis
16.
Molecules ; 25(1)2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31906348

RESUMEN

The synthesis of bioplastic from marine microbes has a great attendance in the realm of biotechnological applications for sustainable eco-management. This study aims to isolate novel strains of poly-ß-hydroxybutyrate (PHB)-producing bacteria from the mangrove rhizosphere, Red Sea, Saudi Arabia, and to characterize the extracted polymer. The efficient marine bacterial isolates were identified by the phylogenetic analysis of the 16S rRNA genes as Tamlana crocina, Bacillus aquimaris, Erythrobacter aquimaris, and Halomonas halophila. The optimization of PHB accumulation by E. aquimaris was achieved at 120 h, pH 8.0, 35 °C, and 2% NaCl, using glucose and peptone as the best carbon and nitrogen sources at a C:N ratio of 9.2:1. The characterization of the extracted biopolymer by Fourier-transform infrared spectroscopy (FTIR), Nuclear magnetic resonance (NMR), and Gas chromatography-mass spectrometry (GC-MS) proves the presence of hydroxyl, methyl, methylene, methine, and ester carbonyl groups, as well as derivative products of butanoic acid, that confirmed the structure of the polymer as PHB. This is the first report on E. aquimaris as a PHB producer, which promoted the hypothesis that marine rhizospheric bacteria were a new area of research for the production of biopolymers of commercial value.


Asunto(s)
Biopolímeros/biosíntesis , Biopolímeros/química , Hidroxibutiratos/química , Hidroxibutiratos/metabolismo , Poliésteres/química , Poliésteres/metabolismo , Sphingomonadaceae/química , Sphingomonadaceae/metabolismo , Avicennia/microbiología , Bacillus/química , Bacillus/genética , Bacillus/metabolismo , Biopolímeros/análisis , Carbono/química , Carbono/metabolismo , Fermentación , Flavobacteriaceae/química , Flavobacteriaceae/genética , Flavobacteriaceae/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Halomonas/química , Halomonas/genética , Halomonas/metabolismo , Hidroxibutiratos/análisis , Espectroscopía de Resonancia Magnética , Nitrógeno/química , Nitrógeno/metabolismo , Filogenia , Poliésteres/análisis , ARN Ribosómico 16S/genética , Rizosfera , Salinidad , Arabia Saudita , Agua de Mar/microbiología , Espectroscopía Infrarroja por Transformada de Fourier , Sphingomonadaceae/genética , Sphingomonadaceae/aislamiento & purificación , Temperatura
17.
Open Life Sci ; 15: 185-197, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33987475

RESUMEN

Cellulosic date palm wastes may have beneficial biotechnological applications for eco-friendly utilization. This study reports the isolation of thermophilic cellulase-producing bacteria and their application in lactic acid production using date palm leaves. The promising isolate was identified as Paenibacillus alvei by 16S rRNA gene sequencing. Maximum cellulase production was acquired using alkaline treated date palm leaves (ATDPL) at 48 h and yielded 4.50 U.mL-1 FPase, 8.11 U.mL-1 CMCase, and 2.74 U.mL-1 ß-glucosidase. The cellulase activity was optimal at pH 5.0 and 50°C with good stability at a wide temperature (40-70°C) and pH (4.0-7.0) range, demonstrating its suitability in simultaneous saccharification and fermentation. Lactic acid fermentation was optimized at 4 days, pH 5.0, 50°C, 6.0% cellulose of ATDPL, 30 FPU/ g cellulose, 1.0 g. L-1 Tween 80, and 5.0 g. L-l yeast extract using Lactobacillus delbrueckii. The conversion efficiency of lactic acid from the cellulose of ATDPL was 98.71%, and the lactic acid productivity was 0.719 g. L-1 h-1. Alkaline treatment exhibited a valuable effect on the production of cellulases and lactic acid by reducing the lignin content and cellulose crystallinity. The results of this study offer a credible procedure for using date palm leaves for microbial industrial applications.

19.
Open Life Sci ; 13: 470-480, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33817116

RESUMEN

Hydrolytic enzyme production by thermophilic bacteria isolated from hot springs in the southern region of Saudi Arabia was investigated. The physical and chemical properties of the hot springs prove to be an important environment for hydrolytic-enzyme-producing thermophilic bacteria. Eighty-four bacterial isolates were obtained from three hot springs: Al-Majardah, Al-Khubah and Al-Ardah. Screening of the isolates for enzyme production indicated that 78 isolates showed activity for one or more enzymes. Molecular identification and phylogenic analysis of selected promising isolates confirmed the identity of the isolates as Bacillus aerius, Bacillus licheniformis and Bacillus sonorensis, which have potential to produce the target enzymes α-amylase, protease and lipase, respectively. Optimization of hydrolytic enzyme production by bacterial strains was investigated using kitchen waste as a cheap carbon energy source. Maximum enzyme production was achieved after 72 hours of incubation at the beginning of the stationary phase of growth. Enzyme production was dependent on the initial pH value in the range of pH 7.5-8.5 and an optimal incubation temperature of between 55-60°C. Enzyme production increased gradually in proportion to the kitchen waste concentration; whereas maximum lipase production was gained at 5.0% (w/v) kitchen waste, 7.0% (w/v) of waste was optimal for both α-amylase and protease productivity. The results indicated that hot springs in Saudi Arabia are a substantial source of thermophilic bacteria producing industrially important enzymes using cheap and unexploited waste.

20.
Biocontrol Sci ; 17(4): 155-67, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23269217

RESUMEN

The study aimed to investigate new wide-spectrum biological control agents against soil-borne fungal plant pathogens. Screening of 336 fungal strains and 256 bacterial strains was carried out in vitro to select the most promising isolates for controlling destructive pathogens of greenhouse-vegetables. In dual cultures, Bacillus subtilis JF419701 and Trichoderma harzianum JF419706 (teleomorph: Hypocrea lixii) inhibited the growth of Alternaria alternata, Fusarium oxysporum, Exserohilum rostratum, Macrophomina phaseolina, Pythium ultimum and Rhizoctonia solani. Microscopic examination showed the ability of T. harzianum JF419706 to parasitize the hyphae of all pathogens and kill them. T. harzianum produced the cell wall degrading enzymes; α-1-3-glucanase (0.83 U/ml) , ß-1-3-glucanase (0.89 U/ml) and chitinase (0.86 U/ml) in high concentrations. However, B. subtilis produced proteases in very high concentrations (9341.64 U/ml) . The culture filtrate of T. harzianum did not show any antifungal effect. The cell free extract of B. subtilis, containing cyano-compounds, suppressed the growth of all phytopathogens, especially M. phaseolina. Results proved the efficacy of the two biological control agents to control the common soil pathogens either singly or in combination. We recommend further field experiments to study either the synergistic or antagonistic interactions between them under natural conditions.


Asunto(s)
Bacterias/crecimiento & desarrollo , Hongos/crecimiento & desarrollo , Hongos/patogenicidad , Interacciones Microbianas , Control Biológico de Vectores/métodos , Enfermedades de las Plantas/microbiología , Microbiología del Suelo , Antifúngicos/metabolismo , Bacterias/aislamiento & purificación , Hongos/aislamiento & purificación , Viabilidad Microbiana , Microscopía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...